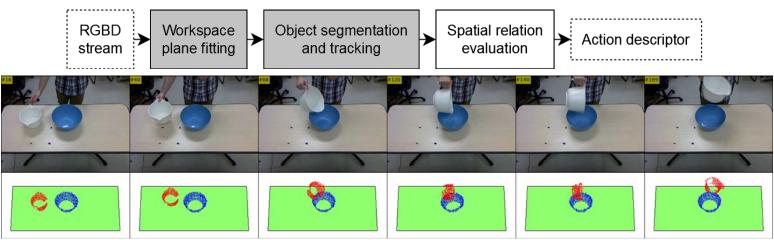
Learning the Spatial Semantics of Manipulation Actions through Preposition Grounding

Konstantinos Zampogiannis, Yezhou Yang, Cornelia Fermüller and Yiannis Aloimonos

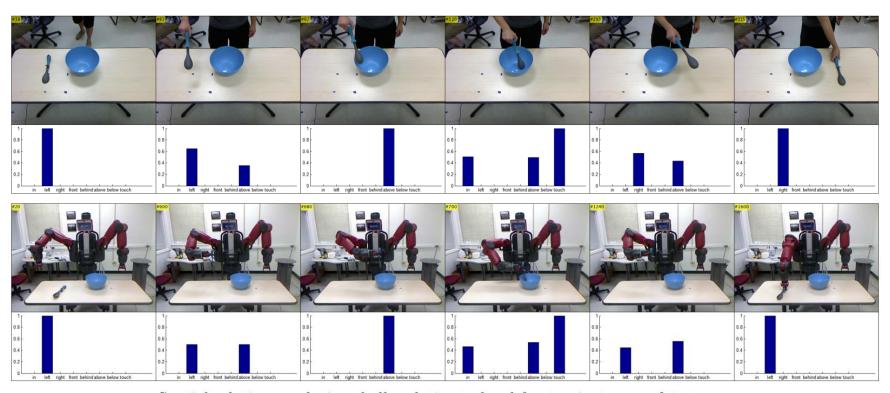
Overview

- We propose an abstract action representation that captures the temporal evolution of spatial pairwise object relations
- Processing steps (pipeline):



- Given the tracked point clouds for all objects involved in the manipulation:
 - A set of spatial relation predicates are evaluated for all object pairs at all video frames
 - Action descriptors are built upon spatial Predicate Vector Sequences (PVS)
- An appropriate time-normalized distance measure for our representation is introduced

Temporal evolution of spatial relations



Spatial relations evolution: ladle relative to bowl for two instances of Stir.

Spatial relation grounding: relative spaces

 Align sensor frame xyz with workspace plane normal:

$$\hat{v} = \operatorname{sgn}(\hat{y} \cdot \hat{n}) \,\hat{n}$$

$$\hat{w} = (\hat{z} - (\hat{v} \cdot \hat{z}) \,\hat{v}) / \|\hat{z} - (\hat{v} \cdot \hat{z}) \,\hat{v}\|$$

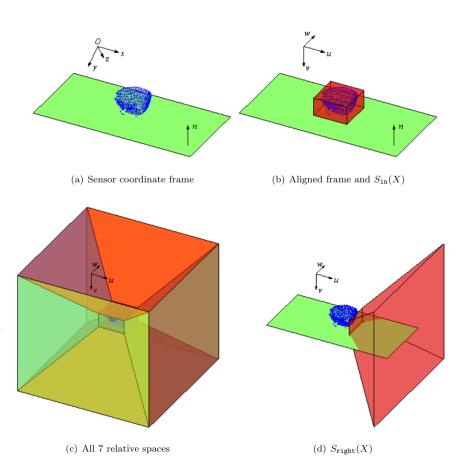
$$\hat{u} = \hat{v} \times \hat{w}$$

• Aligned frame *uvw* captures six basic directions:

Spatial relation defining directions

Direction	left	right	front	behind	above	below	
Reference vector	$-\hat{u}$	$+\hat{u}$	$-\hat{w}$	$+\hat{w}$	$-\hat{v}$	$+\hat{v}$	

- uvw-aligned bounding box for object X (blue point cloud) models object interior space $S_{\rm in}(X)$
- Seven spaces $S_r(X)$ are defined relative to object X, for $r \in \{\text{in, left, right, front, behind, below, above}\}$



Spatial relation grounding: predicates

• We define real-valued predicates $R_r(X,Y)$, for all relations $r \in \mathcal{R}^S = \{\text{in, left, right, front, behind, below, above}\}$, simply as the fraction of object X that lies in $S_r(Y)$:

$$R_r(X,Y) = \frac{|X \cap S_r(Y)|}{|X|}$$

The set of $R_r(X,Y)$, for all r, gives the spatial distribution of X relative to Y.

Binary-valued contactual predicate (touch relation):

$$R_{\text{touch}}(X,Y) = \begin{cases} 1 & \text{if } R_{\text{in}}(X,Y) > 0\\ & \text{or } R_{\text{in}}(Y,X) > 0\\ & \text{or } d_m < d_T\\ 0 & \text{otherwise} \end{cases}$$

where d_m is the linear SVM margin between point sets $\it X$ and $\it Y$

- $\mathcal{R}^f = \{\text{in, left, right, front, behind, below, above, touch}\}$ is the full set of our modeled spatial relations
- Spatial abstraction: left, right, front and behind relations mostly capture viewpoint-specific information and may depend on execution-specific object arrangements, while having little to do with the manipulation semantics. We combine them into a new relation (around):

$$\begin{split} R_{\texttt{around}}(X,Y) = & R_{\texttt{left}}(X,Y) + R_{\texttt{right}}(X,Y) + \\ & R_{\texttt{front}}(X,Y) + R_{\texttt{behind}}(X,Y) \end{split}$$

• $\mathcal{R}^a = \{\text{in, around, below, above, touch}\}\$ is the set of relations we will use to build our **action descriptors!**

Action descriptors

• Let $\Phi^t(i,j)$ be the *predicate vector* for all relations in \mathcal{R}^a between objects with indices i and j at time t, where $i,j=1,\ldots,N_o$:

$$\Phi^t(i,j) \equiv \left(R_{\text{in}}(X_i^t,X_j^t),R_{\text{around}}(X_i^t,X_j^t),R_{\text{below}}(X_i^t,X_j^t),R_{\text{above}}(X_i^t,X_j^t),R_{\text{touch}}(X_i^t,X_j^t)\right)$$

• We will call the temporal sequence of $\Phi^t(i,j)$, for t=1,...,T, the *Predicate Vector Sequence* (PVS) for object pair (i,j):

$$\Phi(i,j) \equiv \left(\Phi^1(i,j), \dots, \Phi^T(i,j)\right)$$

• Our action descriptor will be an ordered set of the PVSes for all $N_r = N_o(N_o-1)$ ordered object pairs, arranged in a known order imposed by function I_{N_o} :

$$A \equiv (\Phi_1, \dots, \Phi_{N_r})$$

where, for $k=1,\ldots,N_r$, $\Phi_k\equiv\Phi(i,j)$ and $(i,j)=I_{N_o}(k)$. Function I_{N_o} can be any bijection from $\{1,\ldots,N_r\}$ to the set of all ordered object pairs.

Pairwise distance function

- Calculating the distance between action descriptors A^1 (N_o^1 objects, N_r^1 PVSes) and A^2 (N_o^2 objects, N_r^2 PVSes) is based on finding an optimal **object correspondence** between them
- An object correspondence is encoded in a $N_o^1 \times N_o^2$ binary assignment matrix $X = (x_{ij})$: $x_{ij} = 1$ if and only if object i in A^1 is matched to object j in A^2
- Object correspondence X induces a **PVS** correspondence $Y_X = (y_{r^1r^2}) (N_r^1 \times N_r^2$ binary matrix)
- The **cost** of assignment is then:

$$J(Y_X) = \sum_{r=1}^{N_r^1} \sum_{r^2=1}^{N_r^2} c_{r^1 r^2} y_{r^1 r^2}$$

where $c_{r^1r^2}$ is the **Dynamic Time Warping** (DTW) distance between PVS r^1 in A^1 and PVS r^2 in A^2 :

$$c_{r^1r^2} = \text{DTW}(\Phi_{r^1}^1, \Phi_{r^2}^2)$$

• PVS r^1 in A^1 refers to object pair:

$$(o_1^1, o_2^1) = I_{N_0^1}(r^1)$$

PVS r^2 in A^2 refers to object pair:

$$(o_1^2, o_2^2) = I_{N_o^2}(r^2)$$

Clearly, $y_{r^1r^2} = 1$ if and only if o_1^1 is mapped to o_1^2 and o_2^1 to o_2^2 , or:

$$y_{r^1r^2} = x_{o_1^1o_1^2} x_{o_2^1o_2^2}$$

Binary Quadratic Program

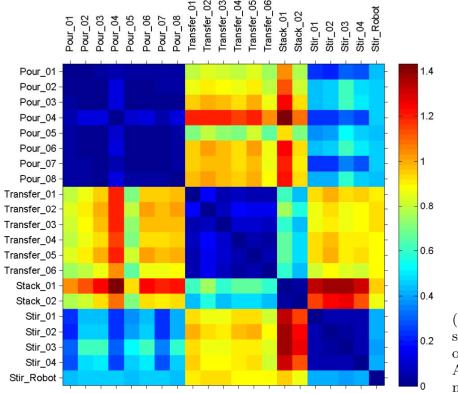
$$\begin{aligned} & \text{Minimize} & J(X) = \sum_{r^1=1}^{N_r^1} \sum_{r^2=1}^{N_r^2} c_{r^1 r^2} x_{o_1^1 o_1^2} x_{o_2^1 o_2^2} \\ & \text{where} & (o_1^1, o_2^1) = I_{N_o^1}(r^1), \ (o_1^2, o_2^2) = I_{N_o^2}(r^2) \\ & \text{subject to} & \sum_{j=1}^{N_o^2} x_{ij} \leq 1, \quad i = 1, \dots, N_o^1 \\ & \sum_{i=1}^{N_o^1} x_{ij} \leq 1, \quad j = 1, \dots, N_o^2 \\ & \sum_{i=1}^{N_o^1} \sum_{j=1}^{N_o^2} x_{ij} = \min(N_o^1, N_o^2) \\ & x_{ij} \in \{0, 1\}, \quad i \in \{1, \dots, N_o^2\} \\ & j \in \{1, \dots, N_o^2\} \end{aligned}$$

Distance value:

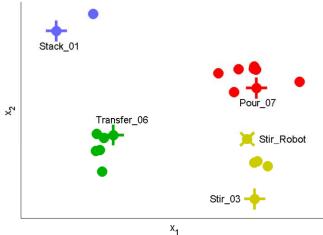
$$d(A^1, A^2) = \min_X(J(X))$$

Case study: unsupervised clustering

- 20+1 action executions in 4 semantic classes (Pour, Transfer, Stack, Stir)
 - Different performers, initial/final object arrangements, significant timing variations
- We used Affinity Propagation, with similarities $s_{ij} = -d_{ij}$ and uniform preferences for all points (equal to the median of all similarities).
 - Correct number of clusters was returned and there were no classification errors



(a) Pairwise distances matrix $D = (d_{ij})$, where $d_{ij} = d(A^i, A^j)$.



(b) Embedding of our action descriptors in 2 dimensions, based on our distance measure. Different colors correspond to different clusters, as returned by Affinity Propagation, and cluster representatives are marked by crosses.

Conclusions and future work

 The evolution of pairwise spatial relations between objects is very descriptive of the high-level manipulation semantics

- Online action matching:
 - Robot control policy
 - Prediction

 Our descriptors can be part of a more complete, multi-layered action representation