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Abstract— In this paper, we introduce an abstract rep-
resentation for manipulation actions that is based on the
evolution of the spatial relations between involved objects.
Object tracking in RGBD streams enables straightforward
and intuitive ways to model spatial relations in 3D space.
Reasoning in 3D overcomes many of the limitations of similar
previous approaches, while providing significant flexibility in
the desired level of abstraction. At each frame of a manip-
ulation video, we evaluate a number of spatial predicates
for all object pairs and treat the resulting set of sequences
(Predicate Vector Sequences, PVS) as an action descriptor. As
part of our representation, we introduce a symmetric, time-
normalized pairwise distance measure that relies on finding
an optimal object correspondence between two actions. We
experimentally evaluate the method on the classification of
various manipulation actions in video, performed at different
speeds and timings and involving different objects. The results
demonstrate that the proposed representation is remarkably
descriptive of the high-level manipulation semantics.

I. INTRODUCTION

Intelligent robots built for manipulation tasks need to
learn how to manipulate. However, given that there is an
infinite number of ways to perform a certain manipula-
tion action, such as for example, making a peanut butter
and jelly sandwich [1], the robot should be able to store
and organize compact representations effectively, rather than
simply a large set of examples that are hard to generalize.
Various aspects and levels of representations of manipulation
actions have been studied, such as objects and tools [2], [3],
manipulator trajectories [4], [5], actions and sub-actions [6],
object-wise touch relations [7], action consequences or goals
[8], etc. In this work, we focus on another crucial aspect
of manipulation actions, which is the object-wise spatial
relations in 3D space and the correlation of their temporal
evolution to the underlying manipulation semantics.

Why are spatial relations crucial for interpreting manipu-
lations? First of all, while most primitive spatial relations
can be inferred directly from the perceptual input, their
exploitation allows for more complex types of reasoning
about not only geometric, but also the underlying physical
relations between objects. For example, by perceiving that
an apple is “ABOVE” a plate as well as that these two
“TOUCH”, we can infer that the plate is the supporting
object. Secondly, at a higher level, by grounding the spatial
relations for the most commonly used prepositions in natural
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language, we effectively establish a bridge from observation
to language and then from language to execution.

Additionally, a correct understanding of object-wise spatial
relations for a given action is essential for a robot to perform
the action successfully. For example, when a robot is asked
to “Pour a cup of coffee from the pitcher”, it not only needs
to recognize “cup” and “pitcher” and generate a sequence
of trajectories to perform the “pour” action, but also needs
to perform geometric precondition checks on the 3D spatial
relations between “pitcher” and “cup”: unless the “pitcher”
tip is “ABOVE” the “cup”, “pour” should not be triggered!
In other words, a correct understanding of spatial relations
can provide the premise of an accurate execution.

Few work has touched upon object-wise spatial relations
for manipulation actions, due to the difficulties inherited from
object tracking (inevitable occlusions, etc.). A joint segmen-
tation and tracking technique to reason about “touch” and
“contain” relations from top-down 2D views is used in [7].
The limitations of their approach come from reasoning in 2D.
For example, their system is not able to differentiate between
spatial predicates “above” and “in”. Other approaches on
spatial reasoning [9] require additional equipment, such as
motion capture suits, which makes them impractical for more
general purpose applications.

The goal of our work is to develop a system which equips
the robot with a fundamental and reliable understanding of
3D spatial relations. During both observing and executing
manipulation actions, a robot with our proposed capabilities
will be able to understand and reproduce the evolution of the
spatial relations between involved objects with high accuracy.
We show that a 3D spatial relation based representation is
highly descriptive of the underlying action semantics.

At the lower level of this work, we developed a system
for RGBD object segmentation and tracking that does not
require additional markers on the objects and allows us to
overcome difficulties arising from 2D-only image reasoning.
Given point cloud representations for all tracked objects, we
adopted a straightforward yet intuitive way to model geomet-
ric relations for the most commonly used natural language
spatial prepositions by partitioning the space around each
object. For a given object pair, our spatial relation predicates
effectively capture the spatial distribution of the first object
with respect to the second. The temporal evolution of each
such distribution is encoded in a Predicate Vector Sequence
(PVS). At a higher level, we a) propose a novel action
descriptor, which is merely a properly ordered set of PVSes
for all involved object pairs, and b) introduce its associated
distance measure, which relies on finding an optimal, in



terms of PVS similarity, object correspondence between two
given actions in this representation. Experiments on real
manipulation videos for various actions, performed with
significant amounts of variation (e.g., different subjects,
execution speeds, initial/final object placements, etc.), indi-
cate that our proposed abstract representation successfully
captures the manipulation’s high-level semantic information,
while demonstrating high discriminative performance.

II. RELATED WORK

From the very beginning of robotics research, a great
amount of work has been devoted to the study of manip-
ulation, due to its direct applications in intelligent manu-
facturing. With the recent development of advanced robotic
manipulators, work on robust and accurate manipulation
techniques has followed quickly. For example, [10] devel-
oped a method for the PR2 to fold towels, which is based on
multiple-view geometry and visual processes of grasp point
detection. In [11], they proposed learning object affordance
models in multi-object manipulation tasks. Robots searching
for objects were investigated in [12], using reasoning about
both perception and manipulation. [4] and [5] developed
manipulation and perception capabilities for their humanoid
robot, ARMAR-III, based on imitation learning for human
environments. A good survey on humanoid dual arm manip-
ulation can be found in [13]. These works reached promising
results on robotic manipulation, but they focused on specific
actions without allowing for generalization. Here, we suggest
that the temporal evolution of object-wise 3D spatial relations
is a highly descriptive feature for manipulation actions and
thus can be potentially used for generalizing learned actions.

Several recent works have studied spatial relations in the
context of robot manipulation, either explicitly or implicitly.
From a purely recognition point of view, the prepositions
proposed in [14] can be directly used for training visual
classifiers. Recently, [15] built a joint model of prepositions
and objects in order to parse natural language commands,
following the method introduced in [16]. In [17] and [18], su-
pervised learning techniques were employed to symbolically
ground a specific set of spatial relations, using displacements
of likely object contact points and histograms that encode the
relative position of elementary surface patches as features
respectively. However, in general contexts, most common
spatial prepositions do not have ambiguous geometric mean-
ings and can, in principle, be directly modeled. Instead of
grounding them via learning from large sets of annotated
data, we directly model spatial relations according to their
clear geometric interpretation.

In [7], they developed a 2D video segmentation and
tracking system, through which they proposed a compact
model for manipulation actions based on the evolution of
simple, 2D geometric relations between tracked segments.
Reasoning with only 2D segments enforces an unwanted and
unnecessary type of abstraction in the representation due to
the loss of geometric information. In this paper, instead, we
infer spatial relations between segmented point clouds in 3D

space, which enables our system to generate representations
of controlled levels of abstraction and discriminative power.

III. OUR APPROACH

A. Overview of our method

A very brief description of the processing steps involved
in our method is provided here and details are discussed in
the following subsections.

Workspace
plane fitting

Object segmentation
and tracking

Action descriptor
Spatial relation

evaluation
RGBD
stream

Fig. 1. Processing steps for our action descriptor extraction.

A schematic of our action descriptor extraction pipeline is
given in Fig. 1. The input to our algorithm is an RGBD
video of a manipulation action. The objects of interest
are segmented in the first frame and tracked in 3D space
throughout the rest of the sequence (Section III-B). At each
time instant, we evaluate a predetermined set of pairwise
spatial predicates for each pair of tracked objects (Section III-
C), thus obtaining a sequence of spatial relation descriptors
for every object pair (Predicate Vector Sequence, PVS).
This set of sequences, arranged in a predetermined order,
constitutes our proposed action descriptor (Section III-D).
Subsequently, we define an appropriate pairwise distance
function for this representation, which relies on standard
dynamic programming techniques for time series similarity
evaluation. Distance computation between two actions is
reduced to finding an optimal, in a sense to be defined, object
correspondence between the actions (Section III-E).

Assumptions. To simplify certain subtasks, we assume
that the action takes place, at least at the beginning, on a
planar surface (e.g., on a table) on which all involved objects
initially lie. Furthermore, we assume that the depth sensor
used to record the manipulation remains still throughout the
action duration (no ego-motion). Since our method mostly
pertains to applications of robots learning by watching hu-
mans or other robots and as long as objects remain visible
in order to be reliably tracked, we do not consider the latter
to be too restrictive.

B. Point cloud tracking

The initialization of the tracking procedure involves fitting
a plane to the workspace surface in the first RGBD frame
of the input sequence. This is done reliably using standard
methods, i.e. least squares fitting under RANSAC. The points
that lie a certain threshold distance above the estimated
plane are clustered based on which connected component
of their k-NN graph they belong to. Assuming that the
maximum distance between points that belong to the same
object is smaller than the minimum distance between points
of different objects, this simple procedure yields an effective
segmentation of all the objects in the initial frame.

Treating these initial segments (point clouds) as object
models, we initiate one tracker for each object and perform
rigid object tracking using the KLD-sampling adaptive Par-
ticle Filtering algorithm [19] that is implemented in [20].
This results in a point cloud for each object, for each video



frame. We denote this set of point clouds at time index t by
{Xt

1, . . . , X
t
No
}, where No is the number of objects in the

action. In the following, we will use the terms Xt
i and “object

i (at time t)”, for some i = 1, . . . , No, interchangeably. A
sample output of our point cloud tracker for a two object
manipulation recording is depicted in Fig. 2.

Fig. 2. Point cloud tracking for a Pour action. First row: RGB frames
from input video. Second row: workspace plane and point clouds for the
two tracked objects.

We must note that object segmentation and tracking are not
the primary objectives of this study. The approach described
here is the one we used in our experiments (Section IV)
and primarily serves as a showcase for the feasibility of
subsequent processing steps using readily available tools. We
believe that any reasonably performing point cloud tracking
algorithm is adequate for our purposes, as spatial relations
can, in general, be quite insensitive to tracking accuracy.

C. Spatial relations

Here, we describe a straightforward yet intuitive approach
to modeling pairwise spatial relations between objects, given
their point clouds in 3D space. We begin by defining an aux-
iliary coordinate frame, whose axes will directly determine
the left/right, above/below and front/behind di-
rections. As mentioned previously, we assume a still camera
(robot’s eyes) looking at the planar surface where the ma-
nipulation takes place.

The auxiliary axes directions are calculated using general
prior knowledge about the axis orientations of our RGBD
sensor world coordinate frame, in which the object point
clouds are in known positions, and the workspace normal
vector that was estimated during the plane fitting step of
segmentation/tracking. Naturally, since the planar workspace
(initially) supports all the objects involved in the manipu-
lation, we would want the above/below direction to be
directly defined by its normal vector n.

(a) (b)
Fig. 3. Coordinate frames.

Our sensor coordinate frame is drawn in Fig. 3(a). As we
can see, the z-axis corresponds to perceived depth, in roughly
the front/behind direction, while the x and y axes point
approximately to the right and downwards, respectively. This
frame can be rotated so that the new axes, u, v and w,
are aligned with the workspace and the aforementioned
directions with respect to it (Fig. 3(b)). Axis v can be set
to be parallel to n (e.g., pointing downwards). Axis w can
then be defined as the projection of the original z-axis to

the orthogonal complement of v. Axis u is then uniquely
determined as being orthogonal to both v and w (e.g., so
that the resulting frame is right-handed). Let x̂, ŷ and ẑ be
the unit length vectors that are codirectional with the sensor
frame axes, n̂ be a unit length workspace normal and û, v̂, ŵ
be the unit length vectors codirectional with the “workspace-
aligned” auxiliary frame axes. The above construction, with
the axis directions chosen as in Fig. 3(b), is captured by the
following equations:

v̂ = sgn (ŷ · n̂) n̂,

ŵ = (ẑ − (v̂ · ẑ) v̂) /‖ẑ − (v̂ · ẑ) v̂‖,
û = v̂ × ŵ,

where a · b is the dot product of vectors a and b, a × b is
their cross product, sgn is the signum function and ‖x‖ is the
Euclidean norm of x. Table I defines the 6 spatial relation
defining directions in terms of the auxiliary frame axes.

TABLE I
SPATIAL RELATION DEFINING DIRECTIONS

Direction left right front behind above below

Reference
vector −û +û −ŵ +ŵ −v̂ +v̂

To infer spatial relations between objects, we will first
build models for the regions of 3D space relative to an
object. For example, to reason about some object being on
the right of object X at some given time, we first explicitly
model the space region on the right of X . We will consider
7 space regions with respect to a given object: one that
will represent the object interior (for the in relation) and
6 around the object, aligned to the directions of Table I.
We will represent all these relative spaces of X as convex
polyhedra and denote them as Sr(X), for r ∈ {in, left,
right, front, behind, below, above}, so that, for
example, Sright(X) is the space region on the right of X .

(a) (b)
Fig. 4. Directional relative spaces.

We model Sin(X) simply as the smallest bounding box
(cuboid) of X that is aligned with the u, v, w axes (Fig. 3(b)
for the blue point cloud). The 6 “directional” relative spaces
are built upon this one, as indicated in Fig. 4(a). Consider
a uvw-aligned cube, concentric to Sin(X), of edge length
significantly larger than the maximum workspace dimension.
Clearly, each face of Sin(X) with the closest face of the
surrounding cube that is parallel to it can uniquely define an
hexahedron that also has these two as faces. We will use these
6 hexahedra as models for our directional relative spaces. In
Fig. 4(b), we draw Sright(X), where X is represented by
the blue point cloud.



A few remarks are in order. First, all relative spaces are
represented as sets (conjunctions) of linear constraints, so
checking if a point lies in them is very easy. Second, one
would expect the directional relative spaces to be unbounded
(e.g., polyhedral cones). They can be modeled this way
by simply dropping one of their defining linear constraints.
Finally, while more elaborate models can be considered for
Sin(X), like the convex hull of X , the construction of
Fig. 4(a) has the nice property of partitioning the space
around X . This will enable us to easily reason about object
relations in a probabilistic manner, in the sense that our (real-
valued) relation predicates will define the spatial distribution
of an object relative to another. Clearly, this provides a
more flexible framework than modeling using binary-valued
predicates, which can be simply inferred anyway.

We are now ready to define our models for a set of
basic pairwise spatial object relations. We will model 7 of
them (the inclusion relation and the 6 “directional” ones)
directly based on their respective relative space, and an
additional one that is indicative of whether two objects are in
physical contact (touch). Let Rf = {in, left, right,
front, behind, below, above, touch} be our full set
of spatial relations. We note that these primitive relations
correspond to the spatial prepositions most commonly used
in natural language and can be used to model more complex
relations (e.g., we can reason about on based on above
and touch). For each r ∈ Rf , we will define a pairwise
predicate Rr(Xt

i , X
t
j) that quantifies exactly whether Xt

i

is positioned relatively to Xt
j according to relation r. For

example, Rleft(Xt
i , X

t
j) indicates to what degree object i is

on the left of object j at time t.
Let Rs = Rf�{touch} be the set of relations that

can be defined by an explicit space region with respect to
Xt

j (reference object). Instead of making hard decisions, i.e.
using binary values, we let the predicates Rr(Xt

i , X
t
j), for

r ∈ Rs, assume real values in [0, 1] that represent the fraction
of Xt

i that is positioned according to r with respect to Xt
j .

A reasonable way to evaluate Rr(Xt
i , X

t
j), for r ∈ Rs, is

then simply as the fraction of points of Xt
i that lie in the

relative space Sr(Xt
j):

Rr(Xt
i , X

t
j) =

∣∣Xt
i ∩ Sr(Xt

j)
∣∣ / ∣∣Xt

i

∣∣ , (1)

where by |A| we denote the cardinality of set A. Since
Sr(Xt

j), for r ∈ Rs, are mutually disjoint by construction,
the predicates of (1) have the property:∑

r∈Rs

Rr(Xt
i , X

t
j) = 1,

i.e. they define a distribution of the points of Xt
i to the

relative spaces of Xt
j .

The touch relation can be useful in capturing other, non-
primitive spatial relations. For example, by having models
for both above and touch, one can express the on
relation as their “conjunction”. More expressive power is
desirable, as it can translate to better discriminative perfor-
mance for our representation. We let our contactual predicate
Rtouch(Xt

i , X
t
j) assume binary values in {0, 1}. Whenever

either of Rin(Xt
i , X

t
j) or Rin(Xt

j , X
t
i ) is greater than zero,

we can assume that Xt
i is touching Xt

j and, therefore,
Rtouch(Xt

i , X
t
j) = 1. If this were the defining condition

for Rtouch, incorporating the contactual predicate to our set
of spatial relations would be redundant, in the sense that
we already model Rin. However, there are cases where both
Rin(Xt

i , X
t
j) and Rin(Xt

j , X
t
i ) are equal to zero, while Xt

i

is touching Xt
j . We may fail to detect this situation using the

above intersection test for various reasons. For example, the
two objects could simply be extremely close to each other
(touching), without part of one lying inside the other. The
precision of our sensor and the accuracy of our tracker can
also cause the above condition to falsely fail. To compensate
for these situations, whenever both Rin(Xt

i , X
t
j) = 0 and

Rin(Xt
j , X

t
i ) = 0, in which case Xt

i and Xt
j are guaranteed

to be linearly separable point sets, we perform an additional
“proximity” test. We train a linear binary SVM on Xt

i ∪Xt
j ,

with the class labels given by the object ownership for each
data point, and use the classifier margin, dm, as a measure
of distance between Xt

i and Xt
j . If dm falls below a preset

threshold dT , we set Rtouch(Xt
i , X

t
j) = 1. Our complete

model of the contactual predicate is then given by:

Rtouch(Xt
i , X

t
j) =


1 if Rin(Xt

i , X
t
j) > 0

or Rin(Xt
j , X

t
i ) > 0

or dm < dT ,

0 otherwise.
The value of dT depends, among other things, on point cloud
precision related parameters (e.g., sensor and tracking errors)
and was set to a few millimeters in our trials. We note that,
of all relations in Rf , only touch is symmetric.

Spatial abstraction. At this point, we have defined our
models for all relations r ∈ Rf . Our goal is to define
an action representation using the temporal evolution of
spatial object relations. However, tracking all relations in
Rf can yield a representation that is viewpoint-specific or
unnecessarily execution-specific. For example, disambiguat-
ing between left and right or front and behind or,
actually, any two of these is clearly dependent on the sensor
viewpoint and might not be informative about the actual
manipulation semantics. As an example, consider a “stir the
coffee” action that involves a cup and a spoon. Picking up
the spoon from the left of the cup, then stirring the coffee and
finally leaving the spoon on the right of the cup is expected to
have the same high-level semantics as picking up the spoon
from the right of the cup, stirring and then leaving it in
front of the cup. For this reason, we combine the relations
{left, right, front, behind} into one, which we can
simply name around, to obtain a desirable kind of spatial
abstraction that, in most cases we can think of, does not
leave out information that is actually manipulation-specific.
The new relation can be viewed as the disjunction of the 4
ones it replaces and its predicate is given by:
Raround(Xt

i , X
t
j) =Rleft(Xt

i , X
t
j) + Rright(Xt

i , X
t
j)+

Rfront(Xt
i , X

t
j) + Rbehind(Xt

i , X
t
j).

This makes Ra = {in, around, below, above, touch}
the set of relations upon which we will build our action
descriptors.



D. Action descriptors

Let Φt(i, j) be the |Ra|-dimensional vector of all relation
predicates Rr(Xt

i , X
t
j), r ∈ Ra, for object i relative to object

j at time t, arranged in a fixed relation order, e.g., (in,
around, below, above, touch), so that:

Φt(i, j) ≡
(
Rin(Xt

i , X
t
j), . . . , Rtouch(Xt

i , X
t
j)
)
, (2)

where i, j = 1, . . . , No and i 6= j. Let Φ(i, j) denote the
sequence of the predicate vectors (2), for t = 1, . . . , T :

Φ(i, j) ≡
(
Φ1(i, j), . . . ,ΦT (i, j)

)
.

The latter captures the temporal evolution of all spatial
relations inRa of object i with respect to object j throughout
the duration of the manipulation execution. We will call
Φ(i, j) a Predicate Vector Sequence (PVS). PVSes constitute
the building block of our action descriptors and can be
represented as |Ra| × T matrices.

Our proposed action descriptors will contain the PVSes
for all object pairs in the manipulation. As will become
clear in the next subsection, comparing two action descrip-
tors reduces to finding an optimal correspondence between
their involved objects, e.g., infer that object i1 in the first
action corresponds to object i2 in the second. To facilitate
this matching task, we require our proposed descriptors to
possess two properties.

The first has to do with the fact that the spatial relations
we consider are not symmetric. A simple solution to fully
capture the temporally evolving spatial relations between
objects i and j, where none of the objects acts as a reference
point, is to include both Φ(i, j) and Φ(j, i) in our descriptor,
for i, j = 1, . . . , No and i 6= j. This might seem redundant,
but, given our predicate models, there is generally no way
to exactly infer Φt(j, i) from Φt(i, j) (e.g., due to different
object dimensions). Our descriptor will then consist of Nr =
No(No − 1) PVSes, as many as the ordered object pairs.

Finally, we need to be able to identify which (ordered)
object pair a PVS refers to, i.e. associate every PVS in
our representation with a tuple (i, j) of object indices. We
opted to do this implicitly, by introducing a reverse indexing
function and encoding the mapping information in the order
in which the PVSes are stored. Any bijective function INo

from {1, . . . , Nr}, the set of PVS indices, onto {(i, j) | i, j =
1, . . . , No ∧ i 6= j}, the set of ordered object index pairs, is
a valid choice as an indexing function. Our proposed action
descriptors are then ordered sets of the form:

A ≡ (Φ1, . . . ,ΦNr ) ,

where, for k = 1, . . . , Nr, Φk = Φ(i, j) and (i, j) = INo
(k).

Function INo can be embedded in the descriptor extraction
process. Utilizing the knowledge of the PVS ordering within
an action descriptor will simplify the formulation of estab-
lishing an object correspondence between two actions in the
following subsection.

E. Distance measure

To complete our proposed representation, we now intro-
duce an appropriate distance function d on the descriptors
we defined above. If A1 and A2 are two action descriptors,

we design d(A1, A2) to be a symmetric function that gives
a time-normalized distance between the two actions. Addi-
tionally, we allow comparisons between manipulations that
involve different numbers of objects. This will enable us to
reason about the similarity between an action and a subset
(in terms of the objects it involves) of another action. In the
following, for k = 1, 2, let Nk

r be the number of PVSes in
Ak and Nk

o be the number of objects in manipulation Ak,
so that Nk

o (Nk
o − 1) = Nk

r .
At the core of our action distance evaluation lies the

comparison between PVSes. Each PVS is a time series of
|Ra|-dimensional feature vectors that captures the temporal
evolution of all spatial relations between an ordered object
pair. Different action executions have different durations and
may also differ significantly in speed during the course of
manipulation: e.g., certain subtasks may be performed at
different speeds in different executions of semantically iden-
tical manipulations. To compensate for timing differences,
we use the Dynamic Time Warping (DTW) [21] algorithm
to calculate time-normalized, pairwise PVS distances. We
consider the symmetric form of the algorithm in [21], with
no slope constraint or adjustment window restriction.

Let Φ1
r1 and Φ2

r2 be PVSes in A1 and A2, respectively,
where r1 = 1, . . . , N1

r and r2 = 1, . . . , N2
r . We form the

N1
r×N2

r matrix C = (cr1r2) of all time-normalized distances
between some PVS in A1 and some PVS in A2, where:

cr1r2 = DTW(Φ1
r1 ,Φ

2
r2).

In the following, we will calculate d(A1, A2) as the total cost
of an optimal correspondence of PVSes between A1 and A2,
where the cost of assigning Φ1

r1 to Φ2
r2 is given by cr1r2 .

One could simply seek a minimum cost matching of
PVSes between two action descriptors by solving the linear
assignment combinatorial problem, with the assignment costs
given in C (e.g., by means of the Hungarian algorithm [22]).
This would yield an optimal cost PVS correspondence be-
tween the two actions. However, it is clear that the latter does
not necessarily translate to a valid object correspondence.
Instead, we directly seek an object correspondence between
A1 and A2 that induces a minimum cost PVS correspon-
dence. The object correspondence between A1 and A2 can
be represented as an N1

o × N2
o binary-valued assignment

matrix X = (xij), where xij = 1 if and only if object
i in A1, i = 1, . . . , N1

o , is matched to object j in A2,
j = 1, . . . , N2

o . We require that every row and every column
of X has at most one nonzero entry and that the sum of
all entries in X is equal to min(N1

o , N
2
o ). This ensures that

X defines an one-to-one mapping from the objects in the
action involving the fewest objects to the objects in the other
action. An object assignment X is then evaluated in terms
of the PVS correspondence it defines. We denote the latter
by YX = (yr1r2), where yr1r2 = 1 if and only if PVS r1

in A1 is mapped to r2 in A2. The N1
r ×N2

r matrix YX has
the same structure as X , with min(N1

r , N
2
r ) nonzero entries.

The cost of assignment X , in terms of its induced PVS
assignment YX , is then given by the sum of all individual



PVS assignment costs:

J(YX) =

N1
r∑

r1=1

N2
r∑

r2=1

cr1r2yr1r2 . (3)

According to our descriptor definition in the previous sub-
section, the PVS with index r1 in A1 refers to the ordered
object pair (o11, o

1
2) = IN1

o
(r1) and, similarly, r2 in A2 refers

to (o21, o
2
2) = IN2

o
(r2) (superscripts indicate action). Clearly,

yr1r2 is nonzero if and only if object o11 in A1 is assigned
to o21 in A2 and o12 in A1 is assigned to o22 in A2:

yr1r2 = xo11o
2
1
xo12o

2
2
.

Using the above, we can rewrite and optimize (3) in terms of
the object assignment variables xij , for i = 1, . . . , N1

o and
j = 1, . . . , N2

o :

Minimize
X

J(X) =

N1
r∑

r1=1

N2
r∑

r2=1

cr1r2xo11o
2
1
xo12o

2
2

where (o11, o
1
2) = IN1

o
(r1), (o21, o

2
2) = IN2

o
(r2)

subject to ∑N2
o

j=1 xij ≤ 1, i = 1, . . . , N1
o∑N1

o
i=1 xij ≤ 1, j = 1, . . . , N2

o∑N1
o

i=1

∑N2
o
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The binary quadratic program above encodes an instance
of the quadratic assignment problem (QAP), which is NP-
hard. QAP instances of size (number of objects) N > 30 are
considered intractable [23]. However, most manipulations of
practical interest involve a number of objects well below that
limit. In our implementation, we used the SCIP (constraint
integer programming) solver [24]. To evaluate the correctness
and running time behavior of our optimization scheme,
we ran a small number of tests. For various numbers of
objects N , we built an action descriptor A1 by randomly
generating N(N − 1) PVSes. We constructed A2 from A1

based on an arbitrary object permutation (assignment), by
rearranging the PVSes of A1 (according to IN and the
known object permutation) and adding Gaussian noise to
them. Minimization of J(X) gave back the correct object
assignment, even for significant amounts of noise variance.
Running time for N = 10 objects was in the order of a few
(≈ 10) seconds on a laptop machine.

The minimum value of J(X), over all possible object
assignments, directly defines the distance between actions
A1 and A2:

d(A1, A2) = min
X

(J(X)).

The function d(A1, A2) is symmetric and, being a sum of
DTW distances, gives a time-normalized measure of action
dissimilarity. As noted before, d(A1, A2) is also defined
when A1 and A2 involve different numbers of objects (N1

o 6=
N2

o ). For example, if N1
o < N2

o , d(A1, A2) is expected to be
exactly the same as if A2 only involved the N1

o of its objects
to which the objects in A1 are assigned. This flexibility can
be useful in sub-action matching scenarios.

IV. EXPERIMENTS

A. Data description
All our experiments were performed on a set of 21 RGBD

sequences of manipulation executions. All actions involve 2
objects and are partitioned in 4 distinct semantic classes:
• Pour: water poured from a pitcher into a bowl (8

executions).
• Transfer: small object placed inside a bowl (6 exe-

cutions).
• Stack: a book placed on top of another (2 executions).
• Stir: bowl content stirred using a ladle (5 executions,

one of them performed by our robot).
Executions within each semantic class were performed by
various individuals and with various initial and final positions
of the manipulated objects. For example, in some instances of
Stir, the ladle was initially picked from the left of the bowl
and was finally placed on its left, in others, it was picked
from the right and then placed on the left, etc. Naturally,
there were significant timing differences across instances
of the same semantic class (different overall durations and
execution speeds at each action phase).

We also included a robot execution for an instance of
Stir (Fig. 5, bottom rows) that took roughly 4 times the
average human execution duration to complete and demon-
strated disproportionately long “idle” phases throughout the
manipulation. Our robot platform is a standard Baxter hu-
manoid with parallel grippers. To generate trajectories, we
used predefined dynamic movement primitives [25]. The
trajectory start and end points were given from the point
cloud segmentation and transferred onto the robot via a
standard inverse kinematics procedure. We also used visual
servoing to ensure a firm grasp of the tool.

B. Spatial relations evaluation
We begin with a quick evaluation of the performance of

our spatial relation models. To establish our ground truth, we
sampled 3 time instances from each execution sequence. To
evaluate a rich enough set of spatial relations, we sampled
at roughly the beginning, the middle and the end of each
manipulation. For each sample frame, we picked one of
the objects to act as reference (say X1) and picked the
relation r ∈ Rs = {in, left, right, front, behind,
below, above} that best described the position of the
second object, X2, relative to X1. For testing, we calculated
the spatial predicates Rr(X2, X1), for all r ∈ Rs for all 63
annotated frames and labeled each according to the relation
of maximum predicate value. This gave a classification error
rate of 3/63 ≈ 4.8%. However, 2 of the errors were due
to tracking issues and not the spatial predicates per se: in
both Stack executions, significant part of the book at the
bottom overlapped the top one (the tracked point clouds were
barely distinguishable), so in dominated above. The third
error was from a Stir instance (during the stirring phase),
where we decided in with a ground truth of above, which
was the second largest predicate. Overall, we believe that, up
to severe tracking inaccuracy, our spatial relation estimation
can be considered reliable.



Fig. 5. Spatial re-
lations evolution: la-
dle relative to bowl
for two instances of
Stir.

In Fig. 5, we depict part of the temporal evolution of the
spatial predicate vector of the ladle relative to the bowl for
two executions of Stir (samples from the corresponding
PVS for all relations in Rf ): one performed by a human
and one by our robot. From the figure, we can see that our
system can reliably track the temporal evolution of spatial
relations in both observation and execution scenarios.

C. Action classification
To evaluate the discriminative performance of our pro-

posed representation, we begin by forming the matrix D =
(dij) of all pairwise distances for our Na = 21 manipulation
executions, where dij = d(Ai, Aj), for i, j = 1, . . . , Na.
We depict the values of D in Fig. 6. As expected, D is
symmetric with zero diagonal. Manipulation executions of
the same semantic class were grouped together to consecutive
indices (e.g., 1-8 for Pour, 9-14 for Transfer, 15-16 for
Stack and 17-21 for Stir). Given this, the evident block-
diagonal structure of low distance values in D (blue regions)
suggests that the proposed representation can be quite useful
in classification tasks.

Fig. 6. Ma-
trix D = (dij)
of pairwise dis-
tances.

To confirm this intuitive observation, we considered a
clustering scenario by applying the Affinity Propagation
algorithm [26] on our data. Affinity Propagation is an un-
supervised clustering algorithm that does not assume prior
knowledge of the number of classes. Instead, the resulting
number of clusters depends on a set of real-valued “pref-
erence” parameters, one for each data point, that express

Fig. 7. Clustering and
embedding of our action
descriptors in 2 dimen-
sions, based on our sim-
ilarity/distance measure.

how likely the point is to be chosen as a class “exemplar”
(cluster centroid). A common choice [26] is to use the
same preference value for all points, equal to the median
of all pairwise similarities. A similarity measure between
actions Ai and Aj , for i, j = 1, . . . , Na, is directly given
by sij = −dij . Clustering using this scheme resulted in
4 clusters that correctly corresponded to our 4 semantic
classes and there were no classification errors. In Fig. 7,
we plot a 2-dimensional embedding of the action descriptors
for all executions, where we use the same color for all data
points of the same cluster and mark the cluster centroids.
The outcome of our simple clustering experiment confirms
our intuition about matrix D (Fig. 6), suggesting that our
proposed abstract representation is indeed descriptive of the
actual high-level manipulation semantics.

It is worth noting that the descriptor for the robot stir-
ring scenario was correctly classified as a Stir instance
(marked in Fig. 7). This empirically shows that, even when
the specific movement trajectories are quite different, e.g.,
between human trials and robot executions, our PVS-based
representations remain relatively invariant under the pro-
posed distance function. Thus, our learned from observation
manipulation representations could be used to provide addi-
tional constraints for robot control policies.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced our direct take on grounding
spatial relations, by properly partitioning the space around
an object to a set of relative spaces, and then proposed a
novel compact representation that captures the geometric
object interactions during the course of a manipulation.
Experiments conducted on both human and robot executions



validate that 1) our relative space models successfully capture
the geometric interpretation of their respective relation and
the corresponding predicates can be reliably evaluated; 2)
the temporal evolution of object-wise spatial relations, as
encoded in our abstract representation, is indeed descriptive
of the underlying manipulation semantics.

Knowledge of models for spatial relations for common
natural language prepositions is a very strong capability by
itself. First, it enables certain types of nontrivial spatial
reasoning, which is a fundamental aspect of intelligence.
Second, it narrows the gap between observation and exe-
cution, with language acting as the bridge. Particularly, from
the human-robot interaction perspective, a robot equipped
with these models will be able to answer a rich repertoire
of spatial queries and understand commands such as: “pick
up the object on the left of object X and in front of object
Y”. Another such task, closer in spirit to this work, is the
automatic generation of natural language descriptions for
observed actions.

In this work, the matching of our spatial-relation sequence
representations is performed at once on whole sequences.
Currently, we are investigating the possibility of modifying
the matching algorithm into an online one. An online action
matching algorithm is needed if we want a fast system
that observes actions and is able to predict during their
course (e.g., for monitoring the correctness of execution).
Additionally, here, we only took into account one aspect
of manipulation actions: object-wise spatial relations. A
complete action model, that would attempt to bridge the gap
between observation and execution, needs to be a multi-layer
combination of spatial relations and many other aspects, such
as movement trajectories, objects, goals, etc.
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